RUBRICS: HSSC 1st ANNUAL EXAMINATION 2023

SUBJECT: PHYSICS HSSC-II (HA)

Q.\# /Part \#	Criteria	Level 1 (Marks)	Level 2 (Marks)	Level 3 (Marks)	Level 4 (Marks)	Level 5 (Marks)	
2(i)	Explanation of concept of dipole	Correct explanation of dipole e.g. definition, formation of dipole, dipole moment etc. (03)	Partially correct explained any two points mentioned in level 1 (02)	Only one point explained (01)	Wrong answer (0)		
2(ii)	Factors affecting the force on a current carrying conductor placed in magnetic field	Describing the factors (length of conductor, current in the conductor, magnetic induction B, and angle between length and magnetic field) and their relation with magnetic force on the conductor (03)	Partially correct response e.g. mentioning any three factors given in level 1 (02)	Mentioning any two factors given in level 1 OR writing the correct formula $\mathrm{F}=\mathrm{ILBS} \operatorname{Sin} \theta$ (01)	Mentioning any one factor given in level 1 (0.5)	Wrong answer (0)	
2(iii)	Explaining the concept of balancing Wheatstone bridge	Correct explanation of balancing of Wheatstone bridge e.g. labelled diagram, writing the condition R1/R2 = R3/R4, loop currents, net current through galvanometer etc.(03)	Partially correct explanation (02)	Some relevant information (01)	Wrong answer (0)		
2(iv)	Explaining the rise in resistance of conductor due to rise in its temperature	Correct explanation (03)	Partially correct explanation (02)	Some relevant information (01)	Wrong answer (0)		
2(v)	Explaining the reason that Lenz's law is a deduced from law of conservation of energy	Correctly relating the Lenz's law and law of conservation of energy e.g. explaining the relation with a simple experiment or example (03)	Partially correct response (02)	Some relevant information (01)	Wrong answer (0)		
2(vi)	Explanation of production of back emf in motors	Correct explanation e.g. change of magnetic flux through the motor coil and discussion of Faraday's law of e.m. induction to produce back emf. (03)	Partially correct response (02)	Some relevant information (01)	Wrong answer (0)		

2(xviii)	Stating postulates of Bohr's model of hydrogen atom	Correctly stating three postulates with required mathematical equations (if any) (03)	Correctly stating two postulates with required mathematical equations (if any) (02)	Correctly stating anyone postulate with required mathematical equation (if any) (01)	Wrong answer (0)		
2(xix)	Comparing fission and fusion based on how difficult it is to produce the reaction	Correctly describing that fusion is difficult to achieve with at least two reasons (03)	Partially correct response (02)	Some relevant information (01)	Wrong answer (0)		
2(xx)	Calculation of decay constant	Correct calculation and correct answer and unit (03)	Partially correct calculation OR correct calculation with wrong answer (02)	One correct mathematical step (01)	Wrong answer (0)		
	Stating Gauss's law	Correct statement with formula (02)	Partially correct e.g. incomplete statement OR only giving correct formula etc.(01)	Wrong answer (0)			
3(a)	Derivation of electric field intensity due to infinite sheet of charge	Correct derivation e.g. finding electric flux through gaussian surface by definition and by gauss's law, calculating electric field intensity (05)	Any two correct mathematical calculation mentioned in level 1 (04)	Any one correct mathematical calculation mentioned in level 1 (03)	Correctly calculating the electric flux through any two faces of gaussian surface by definition (02)	Correctly calculating the electric flux through anyone face of gaussian surface by definition (01)	Wrong answer (0)
	Figure	Correct labelled figure (01)	Partially correct figure (0.5)	Wrong answer (0)			
	Data	Correct data (01)	Partially correct data (0.5)	Wrong answer (0)			
3(b)	Calculation of electrical energy supplied to electric heater	Correct calculation and correct answer and unit (04)	Partially correct calculation (03)	Any One correct mathematical step (02)	Some relevant step e.g. calculation of current (01)	Wrong answer (0)	

4(a)	Principle of AC generator	Correctly stating principle (01)	Partially correct (0.5)	Wrong answer (0)			
	Construction of AC generator	Correctly stating construction OR Correctly labelled figure (01)	Partially correct (0.5)	Wrong answer (0)			
	Working of AC generator	Correct description of AC generator (02)	Partially correct (01)	Some relevant information (0.5)	Wrong answer (0)		
	Derivation of induced emf formula	Correctly deriving formula for induced emf (03)	Partially correct derivation (02)	Two correct mathematical steps in derivation (01)	Wrong answer (0)		
4 (b)	(i) Calculation of current	Correct calculation with correct answer (02)	Partially correct (01)	Only writing correct formula (0.5)	Wrong answer (0)		
	(ii) Calculation of phase angle	Correct calculation with correct answer (02)	Partially correct (01)	Only writing correct formula (0.5)	Wrong answer (0)		
	(iii) Calculation of power consumed	Correct calculation with correct answer (02)	Partially correct (01)	Only writing correct formula (0.5)	Wrong answer (0)		
5 (a)	Description of LASER	Correctly describing LASER e.g. characteristic of LASER etc. (02)	Partially correct (01)	Some correct relevant information (0.5)	Wrong answer (0)		
	Principle of LASER	Correctly stating principle (02)	Partially correct (01)	Some relevant information (0.5)	Wrong answer (0)		
	Operation of LASER	Correctly describing operation of LASER e.g. explaining population inversion and LASER action with figures etc (04)	correctly description at least one term given in level 1 (03)	Partial correct description of all terms given in level $1(02)$	Some relevant information (01)	Wrong answer (0)	
5 (b)	Calculation of Mass defect of Helium isotope	Correctly calculating Mass defect (02)	Partially correct (01)	Only writing correct formula (0.5)	Wrong answer (0)		
	Calculation of binding energy of Helium isotope	Correctly calculating binding energy (02)	Partially correct (01)	Only writing correct formula (0.5)	Wrong answer (0)		
	Calculation of binding energy per nucleon	Correctly calculating binding energy per nucleon (01)	Partially correct (0.5)	Wrong answer (0)			

Note: All the markers must know the solutions of all the question items of the question paper before starting marking.

